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Swelling dynamics of constrained thin-plate gels under an external force
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We analyze the swelling kinetics of constrained thin-plate gels using the linearized stress-diffusion coupling
model proposed in the previous pagér Yamaue and M. Doi, Phys. Rev. &9, 041402(2004]. The gel is
chemically clamped on the disklike glass plates at the top and the bottom surfaces and can swell and shrink
only along the thickness direction. We analyze how the top plate moves when a force is applied at a certain
point on the top plate while the bottom plate is fixed. We predict thahe translation and the rotation of the
top plate are described by a single exponential relaxation processii jitae rotational relaxation process is
three times faster than the translational one, and(thiatwhen the force is applied to the edge, the displace-
ment by the rotation is four times larger than that by the translation at the edge point where the force is applied.
We also analyze how the gel deforms when it is clamped on the flexible film on which external load is applied.
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I. INTRODUCTION ) 1-¢
Vs—u=—-—YVp, (1
A gel placed in solution absorlger desorbsthe solutions ¢

and swellg(or shrinkg when an external force is applied on
it. The phenomenon is important in various industrial pro-
cesses such as coating and printi@g It is also important in V.o=Vp 2)
the study of gels as actuators and sen§®/. Although the ’
process has been known for a long time, proper theoretical
framework to analyze the process has not been given.
In the previous pap€gr], we have shown that the experi- dV -U+(1-¢)V -v=0. (3)
ments done by Suzuki al. of the swelling of a thin plate gel
whose two surfaces are chemically clamped to the glass
plates[5] cannot be analyzed by the classical model, whichyere ¢ is the friction constant associated with the motion of
describes the swelling kinetics of a spherical g&l7]. We  the polymer relative to the solveng, is the volume fraction
have formulated the dynamics of gels using the linearizeg polymer, andp is the pressure. The first equation repre-
stress-diffusion coupling mod¢B,9| and have shown that sents Darcy's law for the permeation of solvent through the
the experiments of Suzulit al. are naturally explained by ge| network. The second equation stands for the force bal-
this model[1]. _ _ance, whereo is the stress of the gel network. The third
In this paper, we extend the previous work and considegqyation stands for the incompressibility condition.
the swelling kinetics of the disklike gel under external The stresgr is given by the constitutive equation for the

forces. The situation we consider is explained in Fig. 1. Inge| network. Here, we use the linearized form for the stress
this system, the top and bottom surfaces of gels are chemjansor:

cally clamped on the glass plates, and the gels can swell and

shrink only along the thickness direction. We analyze the

time evolution of the thickness and the pressure when a force Ju U IU 2w du

is applied to a point on the top glass plate. We also discuss o = K> —kaij + G(—' +—1-=> —“5,) (4)
the swelling kinetics of a disklike gel clamped to a flexible k 9% ax  dx 37 IX
surface(such as thin polymer films

Il. THE LINEARIZED STRESS DIFFUSION COUPLING
MODEL FOR A THIN-PLATE GEL

We first summarize the linearized stress-diffusion cou-
pling model for geld1]. Let u(r,t) be the displacement of a
point located at in the reference state andr ,t) be its time
derivative[u(r ,t)=du(r,t)/dt]. Letv(r ,t) be the velocity of
the solvent. The equations of motion which determife,t) FIG. 1. Model of the thin-plate gel with rigid surfaces applied
andv(r,t) are as follows. with an external force.
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whereK is the bulk modulus ané is the shear modulus of
gels. Egs(2) and(4) give

(K+%>V(V-u)+GV2u:Vp. (5)

By eliminating the velocity of solvent from Eqgg&l) and(3),
we have

iz

PHYSICAL REVIEW E 70, 011401(2004)
_(1- ¢)2<&2p 19p 1 &Zp)
l arz rar r2of

The boundary condition is described as
p(r =ag, 6,t) = 0 for the boundary at the side. (11)

(10

From Eg.(9), we have

u, = A(r, 6,t)z. (12

V.u= 1 _¢)2V2 (6) From Eqgs.(7) and (8), the displacements, andu, are de-
14 scribed as follows.
Equations(5) and (6) are the closed set which determine - 1dp 2 _
u(r,t) andp(r,t). ulr. 6.21) 2G ar (r,6:0(c5 =7, (13
For the disklike gel shown in Fig. 1, we take the origin of
the cylindrical coordinate at the center point of the gel. Let 11
ay be the initial radius of the gel and:gbe the initial thick- Ug(r, 6,z,t) = ———(r 0, t)(co 2. (14)

ness of the gel. We assume that the thickness of the gel is 2Gr

much smaller than the radius of the dep<ay). Here, we have used the boundary conditions that the gel is
In this system, since the top and bottom surfaces of th@lamped at the two surfaces, which are described as
gel are chemically clamped on the plates, we can assume that

the displacement vectdu,, uy, u,) is of the same order of the
thickness of the ged(t): u,,u,,u,~ c(t). Therefore the terms

ul(r,0,z= tc,t)=0 (15)

of d,u; andr~tg,u; are much smaller than those afy;. In
such a case, E@5) can be approximated as

ap ( 4 )(azu, 1&u,> (1(92ur azu)
Eolk+-G kg e +
ar 3 ar? r ar 296 07
2,
3 r radrdd rco06 oJdraoz
Pu,
=G , 7
072 (7)
2,
roe 3 r2 9 ar2 "t ar azz
<K+—)<1 &u, Llou 1 #u, )wGﬁg
s/\rarae” raa ra0az) o2’
(8)
0—<K+EG>@+G<¥UZ+}%+ 1a2uz> (K+§)
B 97 arz rar  r2g96R 3
Fu. 1oy 1 #u 4 \&u
><< Lo+ —C ) =(K+-G|—%. (9
drdz r 9z raeaz 3 /907

Here, we have assumed that the presgired,z,t) is inde-
pendent ofz, since the equilibration time of the pressure in
the z direction is of the order o€3/D, whereD is the col-

u,(r,6,z= £c,t) =0 for the top and bottom boundary.
By Eq. (12), Eq. (10) is rewritten as

(—¢)2(&2p 19p 1%
l a2 Tor rog

In order to solve this equation, we use the boundary condi-
tion at the surface.

When the top and bottom surfaces of a gel are clamped on
rigid surfaces, such as glass plates, the swelling ratio
A(r, 6,t) is generally described by six time-dependent ampli-
tudes, which correspond to six degrees of freedom of the top
glass plate. The time evolution of each amplitude is calcu-
lated by the six conditions of the mechanical balance and the
momentum balance of the rigid surface described as

ag 27
f er dor(o-pl)yc-n,=f,
0 0

Ar,6,t) = ) (16)

17

ag 2w
J drf dor[(o—pl)x-nlxXr=fXxr, (18
0 0

wheref is a force acting on a point of the rigid plate.

When the top and bottom surfaces of a gel are clamped on
flexible impermeable membranes, the condition of the me-
chanical balance in the direction on any point of the flex-
ible membrane is described as

o, {r,60,t) = p(r,6,t) =f,(r,6), (19

lective diffusion constant, and is negligibly small compared

with the characteristic timéwhich isa3/D) of the swelling.

Since |du,/dr| and [r19u,/ 96 are much smaller than
|ou,/ dz|, and p is independent of, Eq. (6) can be approxi-
mated by

wheref,(r, 6) is the external force acting in tiedirection on
a point at(r, 8,c,) of the flexible surface. Sindgu,/dr| and
Ir"tauy/ 96| are much smaller thafyu,/dz|, from Eq. (12),
o, is related withA(r, ,t) as follows:
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"( éG) (‘éG)<

= (K + gG)A(r, 0,1).

au,
0z

I,

10_%)
ar

raoe
(20)

From Eq.(19), Eq.(16) is rewritten as the diffusion equation
#p  1dp L1 #p

for the pressure.
=D
(ar ror r? an)

whereD is the collective diffusion constant of gels defined
asD=(1-¢)?(K+4G/3)/{. Equation(21) can be solved for
p since the boundary condition fpris known. This diffusion

Ip

PR (21)
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(1,0 = 4 B0~ ), 29)

1
or,t) = gAaOr(r? - a3). (30)

The z component of the total force acting on the top glass
plate must balance with the external foricg

ag 2
f drf d9"(0'22_ p)|z=c:fex-
0 0

Furthermore, the torque balance equation for the top glass
plate is written as

(31

equation leads to a multimode relaxation process of a thin-

plate gel with a boundary condition of E¢lL1).

IIl. SWELLING BY A FORCE ACTING
ON THE GLASS PLATE

We consider the situation that the external forficg
=(0,0,f,) is applied to a point on the top glass plate,
(r,6,2=(a;,0,cp), in the direction normal to the top surface

ag 2
f drf dor? cos B(o,,— P)lyec = fex@r. (32
0 0
From Egs.(20) and(22), o, is given by

Oy = (K + gG>[ao(t) + a4 (t)r cos 4. (33

(see Fig. 1 Our objective is to find out the time dependenceFrom Egs.(26), (29), (30), and(33), Egs.(31) and(32) are

of the displacement(r, #,t) of the top surface.
Since the surface must represent a pldxe, 4,t) must be
written as

A(r, 0,t) = ap(t) + a4 (t)r cosé, (22

where aq(t) and a4(t) are the functions of time to be deter-
mined. Equationg16) and (22) lead to the following Pois-
son’s equation for the pressupér, 6,t).

2

10 ( 0
Far( &$>+ PY: = Bo(t) + Ba(r cosd, (23
where
Bo(t) = 1- ¢)2010(t) (24)
Bit) = i), (25
-t
Now, we assume that the pressprdepends o as follows:
p(r,6,t) = f(r,t) + g(r,t)cos 6. (26)

Equations(23) and (26) lead to the following equations of
f(r,t) andg(r,t):

af
’BO(t)_FE( E) (27)
19(99)\_9
Blo_r&r( ar) r2’ (28

These equations can be solved under the boundary condition

of Eq. (11), which is rewritten ad(ay,t)=0 andg(ag,t)=0:

written as
4 fo, a2
(K + §G> ag(t) = g{z) - %Oﬂo(t), (34)
(K " ge)al(t) Hody _ —ﬁl<t) (35
7730

Equations(24) and (34) give the following equation for the
translation of the top plate.

fex

Tiag(t) = g% (36)

4 -1
(K + EG) - a’o(t),
where7; is the relaxation time for the translation defined by

(37

/TtE

2
a_OD-l
8
Equations(25) and(35) give the following equation for the
rotation of the top plate:

-1
eax:1<K 3G) — ay(t),

oy (t) = (38)

where7; is the relaxation time for the rotation defined by

—=p1

24 (39

=

From Egs.(36) and(38), we can solvex,(t) and a4(t) as

follows:
-1
ao(t)=fiX2(K+ﬂG> {1—exp<—l>}, (40)
7ag 3 T
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FIG. 2. The time evolution of the pressupen gels, where an FIG. 3. The time evolution of the pressupein gels, where an
external force is applied to the center of the top glass platXtermnal force is applied to a right 2edge.p0|nt marked by a small
[—Zfexl(waé):white—>0.0:b|ac@, at the time of t/n c_|rcle of the top glass plat[e—ZfeX/(vraO):whlte—>0.0:b_|ac@, at the
=0,0.2,0.4,0.8,1.2, and 2(0-0m left to rlght) time Oft/Tt=0,0.2,0.4,0.8,1.2, and Z(ﬂom left to I’Igho.

4f. a 4 \1 t time evolution of the thickness of gels is described by the

a(t) = e;—1<K + —G) 1- exp(— —) . (41 superposition of a translation and a rotation, each of which is

™8, 8y 3 Tr described by a single exponential and the characteristic re-

Here, we used the initial conditiong,(0)=0 anda;(0)=0. laxation time depends on the radius of the circular surface,
Therefore Eq(22) leads to (ii) the relaxation time of the rotation is one-third of that of
the translation, andii ) the amplitude of the displacement of

_ fex 4 \1 t the top surface due to the rotation ia;4a, times larger than
U(r, 6,2,1) = gg K+ §G 1-exp{- . that due to the translation at the edgea,).

From Egs.(26), (29), (30), (34), and(35), the time evo-
+ 42_(1){1 _ exp(— l)}aLOCOS 0}2. 42 lution of the pressure in the gel is solved as follows:

Ty

The time evolution of the thickness of gedér, 6,t) is ob- p(r,6,t) = ZfGZX{exp (_ l) + 6a—1exp <_ £>Lcos 9}
tained as follows: Ty, Tt 2N T/ 8o
-1 r 2
.00 _, fex2<K+ﬂG> [1_exp(_1) x{(—) —1}. (44)
Co Ty 3 Tt a
a t r Figure 2 shows the time evolution of the pressure when an
+4—11- exp(— :) —cos¥6 |. (43)  external force is acting on the center of the glass plate
r

=0), at the timet/#=0,0.2,0.4,0.8,1.2, and 2.0. The pro-
These results show the following three predictio($:the files of the time evolution of the pressure are invariant during
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FIG. 4. The profiles of the nondimensional
pressurepwaé/fex in gels in the section along the
x axis, where an external force is applied to a
point on the edge of the top glass plate, at the
time oft/n=0,0.3,0.6,0.9,1.5,2.1, and 3.0.

p/ (fc-»(/’ll:a.o2 )

the swelling process, and that is one of the special propertiesonfirm that the relaxation time of the rotatian is faster

of the diffusion in a single exponential swelling process. Thisthan that of the translatiom;, and the rotation is finished

property agrees with that of the swelling process of a thintapidly in the time oft~ 7. After that, the gel swells by the

plate gel due to changing of the osmotic pressure of thearallel translation of the top glass plate in thelirection

solvent[1]. _ _ while keeping the rotation angle. The amplitude of the dis-
On the other hand, when an external force is applied t0 gjacement due to the rotation on the edge point is four times

point on the edge of the glass pld# =a,), the time evolu- larger than that due to the translation.

tion of the pressure becomes as it is shown in Fig. 3. The

time evolution of the pressure profiles in the section along

thex axis is shown in Fig. 4. We can see that a Iarge pressure IV. SWELLING BY A FORCE ACTING

gradient is created in thedirection in the beginning, which ON THE ELEXIBLE MEMBRANE

causes the solvent flux in thedirection and the rotation of

the top glass plate. The large pressure gradient is relaxed next we consider how the swelling behavior changes if

rapidly with the rotation of the plate, whose relaxation timene top and bottom surfaces of a gel are clamped on flexible
is 7,(=7/3), and until the time of ~ =, the rotation is almost  jmpermeable membranes. Figure 6 shows the situation we
finished _an_d the profile of the the pressure becomes to bggnsider. An external forck,=(0,0 f.,) is applied on a cir-
symmetric in the center of the plate. _ cular region on the top membrane, whose radius jsvhile
Figure 5 shows the time evolution of the displacement he pottom memblane is fixed. Our objective is to find out
c(r, 6,t) wal 4 the time dependence of the displacemeftt) of the top
e 1 K+3G (45 flexible membrane.
0 From Eqgs.(19) and(20), the mechanical balance in tize
calculated at the three points on the top plate,f,2) direction on any point of the flexible membrane is described
=(ay,0,cp),(0,0,c0), and (ag, 7,cy). From Fig. 5 we can as

fex

at the point (ro, 0, co) 4 f
V (K+§G>A(r,t)—p(r,t): :‘Z(al—r). (46)
. ma

, Here, A andp do not depend om. The analytic solution of
Lot the point 0,0, o) this diffusion equation, Eq21), is written as

\\ at the point (ro, 7, c0)

(C/Co-1)K+4G/3)/(fex/nrd)
AN MO - N RO
T

45 1 5 3 7 5
t/n

FIG. 5. The time evolution of the nondimensional displacement
[c(r,(i,t)/co—1](K+4G/3)7ra§/feX of the three points on the top
plate, where the upper line shows the displacement of the point on
the edgefr, #,2)=(ag, 0,cp), the middle line shows that of the cen-
ter point: (r, 4,2)=(0,0,cq), and the lower line shows that of the FIG. 6. Model of the thin-plate gel with a flexible impermeable
point on the edgelr, 6,2)=(ag, 7,Cp). membrane applied with an external force.
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0
0.2
504 T ; ; : FIG. 7. The time evolution of the pressure
NS 0.05 o | i p(r,t) for a swelling process of a gel clamped on
§-06 I ,{_{f”_'g_'_ _____________ R S U ] impermeable membranes under a force applied
=3 _//’ i i on a circle region of the radiug;=0.3, at the
[ 008 . time of t/ 7,=0,0.02,0.03,0.05,0.1,0.2, and 1.0.
0.8 F----------- B : ; -
_.-70.02
B B e ——— ———— T T e -
t/10=0.0 : : :
0 0.2 04 0.6 0.8 1
r/as
* N calculated numerically foa; =0.3a,, and the time evolution
p(r,t) = > Codo B”r exp(— Apb), (47)  of the displacement calculated by the pressfret) and Eq.
n=0

(46) is shown in Fig. 8.

The swelling process of a thin-plate gel for the gel
clamped on flexible impermeable membranes becomes a
multimode relaxation process.

where Jy(x) is the zero order function of the first kind
Bessel's functions. The multimode relaxation timesare
given by \,=7oa, for the a,, calculated byly(a,,) =0, which
is the boundary condition of E@l1). Here, the characteristic
relaxation timer, is defined byr,=D/a3. The initial condi- V. SUMMARY

tion is described as . .
In this paper, we have calculated the swelling process of

fox thin-plate gels with circular surfaces under an external force.
p(r,t=0=-—750(a -r), (48) At first, we analyze the time evolution of the thickness and
ay . . :

the pressure, when a force is applied to a point on the top
which is lead by the conditioA(r,t=0)=0. From the initial glass plgte. The'results show that the displacement of the 'top
condition Eq.(48), the coefficient<, are calculated as surface is descrlbe_d by bqth the tran_slanon and the_ rotation
and each of them is described by a single exponential relax-

of,, { (\/)Tn )}—2 a; (\/)Tn ) ation process. Here, we show the relaxation of rotation is
Ci=———=5| Il VZa f drrdol \/ =1, three times faster than that of translation, and the displace-
mandy D 0 D ment by rotation is four times larger than that by translation

(49) at the point on the edge, when a force is applied to a point on

the edge.
whereJ;(x) denotes the first order function of the first kind  We also analyze the time evolution of the thickness and
Bessel's functions. the pressure, when a gel is clamped on the flexible imperme-

Figure 7 shows the time evolution of the pressp(g,t) able film on which external load is applied. The results show

o
o

e
»

FIG. 8. The time evolution of the non-
e dimensional  displacement [c(r,t)/co—1](K
+4G/3)7ra§/fex for a swelling process of a gel

(C/Co-1)XK+4G/3)/(fex/nrt )

0.2 R clamped on impermeable membranes under a

force applied on a circle region of the radius
0 a,=0.38, at the time of t/74=0,0.02,0.03,

0.05,0.1,0.2, and 1.0.

0.2 ; _—

0.4 —

i i i i
0 0.2 0.4 0.6 0.8 1
r/a.
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that the swelling process becomes a multimode relaxatiothe solvent permeation kinetics of a gel under external

process. forces.
These results show that the stress-diffusion coupling

model of gels, which considers the relative motion between

the solvent and the polymer of gels together with the me-

chanical coupling between the solvent diffusion and the The authors acknowledge support from the Japan Science

polymer network stress, can describe an unusual feature f@and Technology AgencyCREST-JST.
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