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We analyze the swelling kinetics of constrained thin-plate gels using the linearized stress-diffusion coupling
model proposed in the previous paper[T. Yamaue and M. Doi, Phys. Rev. E69, 041402(2004)]. The gel is
chemically clamped on the disklike glass plates at the top and the bottom surfaces and can swell and shrink
only along the thickness direction. We analyze how the top plate moves when a force is applied at a certain
point on the top plate while the bottom plate is fixed. We predict that(i) the translation and the rotation of the
top plate are described by a single exponential relaxation process, that(ii ) the rotational relaxation process is
three times faster than the translational one, and that(iii ) when the force is applied to the edge, the displace-
ment by the rotation is four times larger than that by the translation at the edge point where the force is applied.
We also analyze how the gel deforms when it is clamped on the flexible film on which external load is applied.
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I. INTRODUCTION

A gel placed in solution absorbs(or desorbs) the solutions
and swells(or shrinks) when an external force is applied on
it. The phenomenon is important in various industrial pro-
cesses such as coating and printing[2]. It is also important in
the study of gels as actuators and sensors[3,4]. Although the
process has been known for a long time, proper theoretical
framework to analyze the process has not been given.

In the previous paper[1], we have shown that the experi-
ments done by Suzukiet al.of the swelling of a thin plate gel
whose two surfaces are chemically clamped to the glass
plates[5] cannot be analyzed by the classical model, which
describes the swelling kinetics of a spherical gel[6,7]. We
have formulated the dynamics of gels using the linearized
stress-diffusion coupling model[8,9] and have shown that
the experiments of Suzukiet al. are naturally explained by
this model[1].

In this paper, we extend the previous work and consider
the swelling kinetics of the disklike gel under external
forces. The situation we consider is explained in Fig. 1. In
this system, the top and bottom surfaces of gels are chemi-
cally clamped on the glass plates, and the gels can swell and
shrink only along the thickness direction. We analyze the
time evolution of the thickness and the pressure when a force
is applied to a point on the top glass plate. We also discuss
the swelling kinetics of a disklike gel clamped to a flexible
surface(such as thin polymer films).

II. THE LINEARIZED STRESS DIFFUSION COUPLING
MODEL FOR A THIN-PLATE GEL

We first summarize the linearized stress-diffusion cou-
pling model for gels[1]. Let usr ,td be the displacement of a
point located atr in the reference state andu̇sr ,td be its time
derivativefu̇sr ,td=]usr ,td /]tg. Let vssr ,td be the velocity of
the solvent. The equations of motion which determineusr ,td
andvssr ,td are as follows.

vs − u̇ = −
1 − f

z
= p, s1d

= · s = ¹ p, s2d

f = · u̇+ s1 − fd = · vs = 0. s3d

Here,z is the friction constant associated with the motion of
the polymer relative to the solvent,f is the volume fraction
of polymer, andp is the pressure. The first equation repre-
sents Darcy’s law for the permeation of solvent through the
gel network. The second equation stands for the force bal-
ance, wheres is the stress of the gel network. The third
equation stands for the incompressibility condition.

The stresss is given by the constitutive equation for the
gel network. Here, we use the linearized form for the stress
tensor:

sij = Ko
k

] uk

] xk
dij + GS ] ui

] xj
+

] uj

] xi
−

2

3o
k

] uk

] xk
dijD , s4d

FIG. 1. Model of the thin-plate gel with rigid surfaces applied
with an external force.
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whereK is the bulk modulus andG is the shear modulus of
gels. Eqs.(2) and (4) give

SK +
G

3
D = s= · ud + G=2u = = p. s5d

By eliminating the velocity of solvent from Eqs.(1) and(3),
we have

= · u̇=
s1 − fd2

z
=2p. s6d

Equations(5) and (6) are the closed set which determine
usr ,td andpsr ,td.

For the disklike gel shown in Fig. 1, we take the origin of
the cylindrical coordinate at the center point of the gel. Let
a0 be the initial radius of the gel and 2c0 be the initial thick-
ness of the gel. We assume that the thickness of the gel is
much smaller than the radius of the gelsc0!a0d.

In this system, since the top and bottom surfaces of the
gel are chemically clamped on the plates, we can assume that
the displacement vectorsur ,uu ,uzd is of the same order of the
thickness of the gelcstd: ur ,uu ,uz,cstd. Therefore the terms
of ]rui and r−1]uui are much smaller than those of]zui. In
such a case, Eq.(5) can be approximated as

] p

] r
= SK +

4

3
GDS ]2ur

] r2 +
1

r
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0 =SK +
4

3
GD ]2uz

] z2 + GS ]2uz

] r2 +
1

r

] uz

] r
+

1

r2

]2uz

] u2D + SK +
G

3
D

3S ]2ur

] r ] z
+

1

r

] ur

] z
+

1

r

]2uu

] u ] z
D > SK +

4

3
GD ]2uz

] z2 . s9d

Here, we have assumed that the pressurepsr ,u ,z,td is inde-
pendent ofz, since the equilibration time of the pressure in
the z direction is of the order ofc0

2/D, whereD is the col-
lective diffusion constant, and is negligibly small compared
with the characteristic time(which is a0

2/D) of the swelling.
Since u]u̇r /]r u and ur−1] u̇u /]uu are much smaller than

u]u̇z/]zu, andp is independent ofz, Eq. (6) can be approxi-
mated by

] u̇z

] z
=

s1 − fd2

z
S ]2p

] r2 +
1

r

] p

] r
+

1

r2

]2p

] u2D . s10d

The boundary condition is described as

psr = a0,u,td = 0 for the boundary at the side. s11d

From Eq.(9), we have

uz = Asr,u,tdz. s12d

From Eqs.(7) and (8), the displacementsur and uu are de-
scribed as follows.

ursr,u,z,td =
1

2G

] p

] r
sr,u,tdsc0

2 − z2d, s13d

uusr,u,z,td =
1

2G

1

r

] p

] u
sr,u,tdsc0

2 − z2d. s14d

Here, we have used the boundary conditions that the gel is
clamped at the two surfaces, which are described as

ursr,u,z= ± c,td = 0 s15d

uusr,u,z= ± c,td = 0 for the top and bottom boundary.

By Eq. (12), Eq. (10) is rewritten as

Ȧsr,u,td =
s1 − fd2

z
S ]2p

] r2 +
1

r

] p

] r
+

1

r2

]2p

] u2D . s16d

In order to solve this equation, we use the boundary condi-
tion at the surface.

When the top and bottom surfaces of a gel are clamped on
rigid surfaces, such as glass plates, the swelling ratio
Asr ,u ,td is generally described by six time-dependent ampli-
tudes, which correspond to six degrees of freedom of the top
glass plate. The time evolution of each amplitude is calcu-
lated by the six conditions of the mechanical balance and the
momentum balance of the rigid surface described as

E
0

a0

drE
0

2p

du rss − pI dz=c ·nz = f , s17d

E
0

a0

drE
0

2p

du rfss − pI dz=c ·nzg 3 r = f 3 r , s18d

wheref is a force acting on a point of the rigid plate.
When the top and bottom surfaces of a gel are clamped on

flexible impermeable membranes, the condition of the me-
chanical balance in thez direction on any point of the flex-
ible membrane is described as

szzsr,u,td − psr,u,td = fzsr,ud, s19d

wherefzsr ,ud is the external force acting in thez direction on
a point atsr ,u ,c0d of the flexible surface. Sinceu]ur /]r u and
ur−1]uu /]uu are much smaller thanu]uz/]zu, from Eq. (12),
szz is related withAsr ,u ,td as follows:
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szz= SK +
4
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From Eq.(19), Eq. (16) is rewritten as the diffusion equation
for the pressure.

] p

] t
= DS ]2p

] r2 +
1

r

] p

] r
+

1

r2

]2p

] u2D , s21d

whereD is the collective diffusion constant of gels defined
asD;s1−fd2sK+4G/3d /z. Equation(21) can be solved for
p since the boundary condition forp is known. This diffusion
equation leads to a multimode relaxation process of a thin-
plate gel with a boundary condition of Eq.(11).

III. SWELLING BY A FORCE ACTING
ON THE GLASS PLATE

We consider the situation that the external forcefex
=s0,0,fexd is applied to a point on the top glass plate,
sr ,u ,zd=sa1,0 ,c0d, in the direction normal to the top surface
(see Fig. 1). Our objective is to find out the time dependence
of the displacementcsr ,u ,td of the top surface.

Since the surface must represent a plane,Asr ,u ,td must be
written as

Asr,u,td = a0std + a1stdr cosu, s22d

wherea0std anda1std are the functions of time to be deter-
mined. Equations(16) and (22) lead to the following Pois-
son’s equation for the pressurepsr ,u ,td.

1

r

]

] r
Sr

] p

] r
D +

1

r2

]2p

] u2 = b0std + b1stdr cosu, s23d

where

b0std ;
z

s1 − fd2ȧ0std, s24d

b1std ;
z

s1 − fd2ȧ1std. s25d

Now, we assume that the pressurep depends onu as follows:

psr,u,td ; fsr,td + gsr,tdcosu. s26d

Equations(23) and (26) lead to the following equations of
fsr ,td andgsr ,td:

b0std =
1

r

]

] r
Sr

] f

] r
D , s27d

b1std =
1

r

]

] r
Sr

] g

] r
D −

g

r2 . s28d

These equations can be solved under the boundary condition
of Eq. (11), which is rewritten asfsa0,td=0 andgsa0,td=0:

fsr,td =
1

4
b0stdsr2 − a0

2d, s29d

gsr,td =
1

8
b1stdrsr2 − a0

2d. s30d

Thez component of the total force acting on the top glass
plate must balance with the external forcefex.

E
0

a0

drE
0

2p

dursszz− pduz=c = fex. s31d

Furthermore, the torque balance equation for the top glass
plate is written as

E
0

a0

drE
0

2p

dur2 cosusszz− pduz=c = fexa1. s32d

From Eqs.(20) and (22), szz is given by

szz> SK +
4

3
GDfa0std + a1stdr cosug. s33d

From Eqs.(26), (29), (30), and(33), Eqs.(31) and (32) are
written as

SK +
4

3
GDa0std =

fex

pa0
2 −

a0
2

8
b0std, s34d

SK +
4

3
GDa1std =

4fexa1

pa0
4 −

a0
2

24
b1std. s35d

Equations(24) and (34) give the following equation for the
translation of the top plate.

ttȧ0std =
fex

pa0
2SK +

4

3
GD−1

− a0std, s36d

wherett is the relaxation time for the translation defined by

tt ;
a0

2

8
D−1. s37d

Equations(25) and (35) give the following equation for the
rotation of the top plate:

trȧ1std =
4fexa1

pa0
4 SK +

4

3
GD−1

− a1std, s38d

wheretr is the relaxation time for the rotation defined by

tr ;
a0

2

24
D−1. s39d

From Eqs.(36) and(38), we can solvea0std anda1std as
follows:

a0std =
fex

pa0
2SK +

4

3
GD−1H1 − expS−

t

tt
DJ , s40d
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a1std =
4fex

pa0
3

a1

a0
SK +

4

3
GD−1H1 − expS−

t

tr
DJ . s41d

Here, we used the initial conditionsa0s0d=0 anda1s0d=0.
Therefore Eq.(22) leads to

uzsr,u,z,td =
fex

pa0
2SK +

4

3
GD−1F1 − expS−

t

tt
D

+ 4
a1

a0
H1 − expS−

t

tr
DJ r

a0
cosuGz. s42d

The time evolution of the thickness of gelscsr ,u ,td is ob-
tained as follows:

csr,u,td
c0

= 1 +
fex

pa0
2SK +

4

3
GD−1F1 − expS−

t

tt
D

+ 4
a1

a0
H1 − expS−

t

tr
DJ r

a0
cosuG . s43d

These results show the following three predictions:(i) the

time evolution of the thickness of gels is described by the
superposition of a translation and a rotation, each of which is
described by a single exponential and the characteristic re-
laxation time depends on the radius of the circular surface,
(ii ) the relaxation time of the rotation is one-third of that of
the translation, and(iii ) the amplitude of the displacement of
the top surface due to the rotation is 4a1/a0 times larger than
that due to the translation at the edgesr =a0d.

From Eqs.(26), (29), (30), (34), and (35), the time evo-
lution of the pressure in the gel is solved as follows:

psr,u,td =
2fex

pa0
2HexpS−

t

tt
D + 6

a1

a0
expS−

t

tr
D r

a0
cosuJ

3HS r

a0
D2

− 1J . s44d

Figure 2 shows the time evolution of the pressure when an
external force is acting on the center of the glass platesa1

=0d, at the timet /tt=0,0.2,0.4,0.8,1.2, and 2.0. The pro-
files of the time evolution of the pressure are invariant during

FIG. 2. The time evolution of the pressurep in gels, where an
external force is applied to the center of the top glass plate
f−2fex/ spa0

2d :white→0.0:blackg, at the time of t /tt

=0,0.2,0.4,0.8,1.2, and 2.0(from left to right).

FIG. 3. The time evolution of the pressurep in gels, where an
external force is applied to a right edge point marked by a small
circle of the top glass platef−2fex/ spa0

2d :white→0.0:blackg, at the
time of t /tt=0,0.2,0.4,0.8,1.2, and 2.0(from left to right).
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the swelling process, and that is one of the special properties
of the diffusion in a single exponential swelling process. This
property agrees with that of the swelling process of a thin-
plate gel due to changing of the osmotic pressure of the
solvent[1].

On the other hand, when an external force is applied to a
point on the edge of the glass platesa1=a0d, the time evolu-
tion of the pressure becomes as it is shown in Fig. 3. The
time evolution of the pressure profiles in the section along
thex axis is shown in Fig. 4. We can see that a large pressure
gradient is created in thex direction in the beginning, which
causes the solvent flux in thex direction and the rotation of
the top glass plate. The large pressure gradient is relaxed
rapidly with the rotation of the plate, whose relaxation time
is trs=tt /3d, and until the time oft,tt, the rotation is almost
finished and the profile of the the pressure becomes to be
symmetric in the center of the plate.

Figure 5 shows the time evolution of the displacement

Scsr,u,td
c0

− 1Dpa0
2

fex
SK +

4

3
GD s45d

calculated at the three points on the top plate,sr ,u ,zd
=sa0,0 ,c0d ,s0,0,c0d, and sa0,p ,c0d. From Fig. 5 we can

confirm that the relaxation time of the rotationtr is faster
than that of the translationtt, and the rotation is finished
rapidly in the time oft,tt. After that, the gel swells by the
parallel translation of the top glass plate in thez direction
while keeping the rotation angle. The amplitude of the dis-
placement due to the rotation on the edge point is four times
larger than that due to the translation.

IV. SWELLING BY A FORCE ACTING
ON THE FLEXIBLE MEMBRANE

Next, we consider how the swelling behavior changes if
the top and bottom surfaces of a gel are clamped on flexible
impermeable membranes. Figure 6 shows the situation we
consider. An external forcefex=s0,0,fexd is applied on a cir-
cular region on the top membrane, whose radius isa1, while
the bottom memblane is fixed. Our objective is to find out
the time dependence of the displacementcsr ,td of the top
flexible membrane.

From Eqs.(19) and(20), the mechanical balance in thez
direction on any point of the flexible membrane is described
as

SK +
4

3
GDAsr,td − psr,td =

fex

pa1
2Qsa1 − rd. s46d

Here,A andp do not depend onu. The analytic solution of
this diffusion equation, Eq.(21), is written as

FIG. 4. The profiles of the nondimensional
pressureppa0

2/ fex in gels in the section along the
x axis, where an external force is applied to a
point on the edge of the top glass plate, at the
time of t /tt=0,0.3,0.6,0.9,1.5,2.1, and 3.0.

FIG. 5. The time evolution of the nondimensional displacement
fcsr ,u ,td /c0−1gsK+4G/3dpa0

2/ fex of the three points on the top
plate, where the upper line shows the displacement of the point on
the edge:sr ,u ,zd=sa0,0 ,c0d, the middle line shows that of the cen-
ter point: sr ,u ,zd=s0,0,c0d, and the lower line shows that of the
point on the edge:sr ,u ,zd=sa0,p ,c0d.

FIG. 6. Model of the thin-plate gel with a flexible impermeable
membrane applied with an external force.
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psr,td = o
n=0

`

CnJ0SÎln

D
rDexps− lntd, s47d

where J0sxd is the zero order function of the first kind
Bessel’s functions. The multimode relaxation timesln are
given byln=t0an for the an calculated byJ0sand=0, which
is the boundary condition of Eq.(11). Here, the characteristic
relaxation timet0 is defined byt0;D /a0

2. The initial condi-
tion is described as

psr,t = 0d = −
fex

pa1
2Qsa1 − rd, s48d

which is lead by the conditionAsr ,t=0d=0. From the initial
condition Eq.(48), the coefficientsCn are calculated as

Cn = −
2fex

pa0
2a1

2FJ1SÎln

D
a0DG−2E

0

a1

dr rJ0SÎln

D
rD ,

s49d

whereJ1sxd denotes the first order function of the first kind
Bessel’s functions.

Figure 7 shows the time evolution of the pressurepsr ,td

calculated numerically fora1=0.3a0, and the time evolution
of the displacement calculated by the pressurepsr ,td and Eq.
(46) is shown in Fig. 8.

The swelling process of a thin-plate gel for the gel
clamped on flexible impermeable membranes becomes a
multimode relaxation process.

V. SUMMARY

In this paper, we have calculated the swelling process of
thin-plate gels with circular surfaces under an external force.
At first, we analyze the time evolution of the thickness and
the pressure, when a force is applied to a point on the top
glass plate. The results show that the displacement of the top
surface is described by both the translation and the rotation
and each of them is described by a single exponential relax-
ation process. Here, we show the relaxation of rotation is
three times faster than that of translation, and the displace-
ment by rotation is four times larger than that by translation
at the point on the edge, when a force is applied to a point on
the edge.

We also analyze the time evolution of the thickness and
the pressure, when a gel is clamped on the flexible imperme-
able film on which external load is applied. The results show

FIG. 8. The time evolution of the non-
dimensional displacement fcsr ,td /c0−1gsK
+4G/3dpa1

2/ fex for a swelling process of a gel
clamped on impermeable membranes under a
force applied on a circle region of the radius
a1=0.3a0 at the time of t /t0=0,0.02,0.03,
0.05,0.1,0.2, and 1.0.

FIG. 7. The time evolution of the pressure
psr ,td for a swelling process of a gel clamped on
impermeable membranes under a force applied
on a circle region of the radiusa1=0.3a0 at the
time of t /t0=0,0.02,0.03,0.05,0.1,0.2, and 1.0.
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that the swelling process becomes a multimode relaxation
process.

These results show that the stress-diffusion coupling
model of gels, which considers the relative motion between
the solvent and the polymer of gels together with the me-
chanical coupling between the solvent diffusion and the
polymer network stress, can describe an unusual feature for

the solvent permeation kinetics of a gel under external
forces.
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